

Airport Forecasting

Prof. Richard de Neufville

Istanbul Technical University

Airport Planning and Management

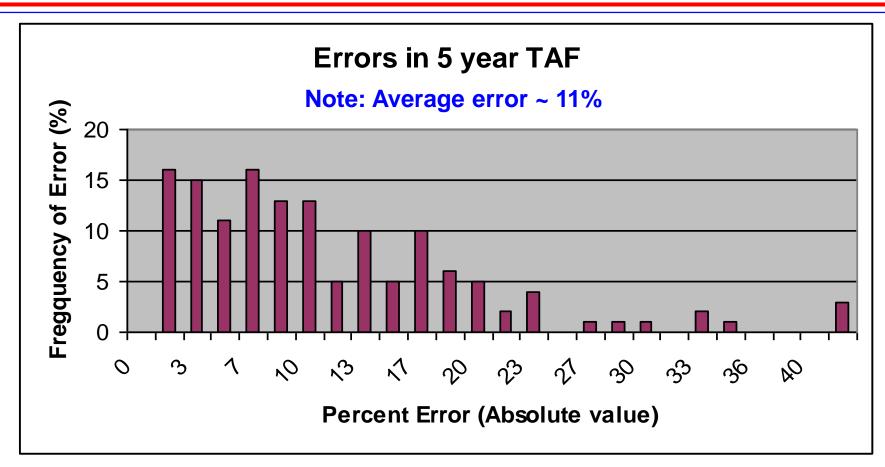
Air Transportation Management

Module 07

M.Sc. Program

January 2017

Forecasting In Practice


- Objective: To present procedure.
- Topics:
 - 1. Premises
 - 2. Many Assumptions underlie forecast methods
 - 3. Basic mechanics of forecast methods
 - 4. Principles for Practice
 - 5. Recommended Procedure
 - 6. Mexico City Example
 - 7. Current International Considerations
 - 8. Summary

Premises

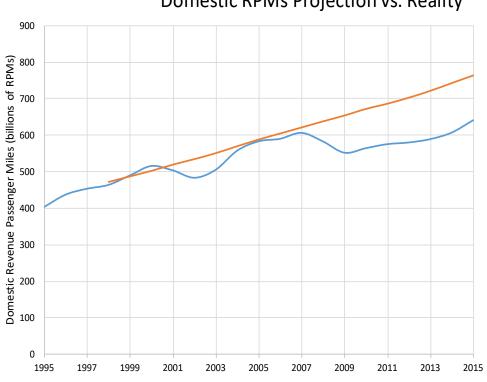
Forecasting is an Art,
 not a Science -- too many
 assumptions
 not a statistical exercise -- too
 many solutions

Forecasts are Inherently Risky

Results of a study of TAF

Adapted from: Terminal Area Forecast (TAF) Accuracy Assessment Results

Jerome Friedman, MITRE CAASD. Study dated Sept. 30, 2004, but data until


2000. Deliberate omission of 2001, 2002 – when traffic dropped enormously

Massive Uncertainty: R de N ©

Assumptions behind any forecasting exercise

 Span of data -- number of periods or situations (10 years? 20? 30?)

Domestic RPMs Projection vs. Reality

Past 10 years: almost level...

Historical Domestic RPMs Projected Domestic RPMs

Past 20 years: Strong rise...

Assumptions behind any forecasting exercise

- Span of data -- number of periods or situations (10 years? 20? 30?)
- Variables -- which ones in formula (price? income? employment? etc)
- Form of variables -- total price?
 price relative to air? To ground?
- Form of equation -- linear? loglinear? translog? Logit?

Logical House of Cards

Choice of variables

- Note first: The more variables you include, the better the statistics in model, the better the fit!
- Why is that?
- Because procedures for creating statistical model only include variables to extent they improve R²

Common forms of forecasting equations

Linear

```
Pax = Population [a +b(Income)+c(Yield)...]
```

Exponential

```
Pax = {a [Yield]<sup>b</sup>}{c [population] <sup>d</sup>} {etc...}
```

Exponential in Time

```
    → Pax = a [e]<sup>rt</sup>
    where r = rate per period
    and t = number of periods
```

Benefits of each?

Fundamental Mathematics of Regression Analysis

Linear equations

+ Logarithm of exponential form => linear

Define "fit"

- \Rightarrow = sum of squared differences of equation and data, $\Sigma (y_1-y_2)^2$
- → => absolute terms, bell-shaped distribution

Optimize fit

- + differentiate fit, solve for parameters
- → R-squared measures fit (0 < R² <1.0)

Let's discuss meaning of correlation for a moment

- There is well-established good correlation between: (Damage at Fire) and (Number of Firemen)
- What do I conclude about how Firemen cause damage?
 - Should I send less firemen to fire?
- The correlation is "spurious":
 Big fires => damage, firemen sent

Ambiguity of Results: Many 'good' results possible

- Common variables (employment, population, income, etc) usually grow exponentially ~ a(e)^{rt}
- They are thus direct functions of each other
 - $+ a(e)^{rt} = [(a/b)(e)^{(r/p)t}]b(e)^{pt}$
- Easy to get 'good' fit
 - → See Miami example

Forecasts of International Passengers (Millions/Year) for Miami/International

Forecast		Forecast	Actual	
Method	Case	2020	1990	
Population	Dade Co.	16.00		
	Dade/Broward	16.61		
	Dade/Broward (Non-Linear)	21.89		
Yield and Per Capita Personal Income	Dade Co.	19.25		
	Dade/Broward	22.25		
	Dade/Broward (Non-Linear)	20.31		
Time Series	Dade Co.	19.84		
	Dade/Broward	20.16	10.01	
	Dade/Broward (Non-Linear)	57.61		
Per Capita Personal Income	Dade Co.	28.38		
	Dade/Broward	25.57		
	Dade/Broward (Non-Linear)	53.79		
Share (US Int'l Pax)		37.76		
Share (US Reg'l Rev.)		25.45		
	Maximum	57.61	576 %	
	Average	27.49	275 %	
	Median	21.20	212 %	
Source: Landrum and Brown (Feb. 5, 1992)	Minimum	16.60	166 %	
• •	Preferred	37.76	377 %	

Forecasts of Domestic Passengers (Millions per year) for Miami/International

Forecast		Forecast	Actual		
Method	Case	2020	1990		
Population	Dade Co.	13.96			
	Dade/Broward	15.35			
	Dade/Broward (Non-Linear)	17.74			
Yield and Per Capita Personal Income	Dade Co.	19.87			
	Dade/Broward	19.69			
	Dade/Broward (Non-Linear)	19.13			
Time Series	Dade Co.	17.41			
	Dade/Broward	18.67	9.92		
	Dade/Broward (Non-Linear)	40.05			
Per Capita Personal Income	Dade Co.	26.58			
	Dade/Broward	24.34]		
	Dade/Broward (Non-Linear)	42.40			
Share of US Traffic		23.48			
	Maximum	42.40	427 %		
	Average	22.97	232 %		
	Median	19.69	198 %		
Source: Landrum and Brown (Feb. 5, 1992)	Minimum	13.96	141 %		
(1 05. 0, 1002)	Preferred	15.35	155 %		

Note Use of "preferred" forecast

- Forecasts obtained statistically often "don't make sense"
- Forecasters often disregard statistical results (expensive, misleading), substituting intuition (cheap)
- E.g.: NE Systems Study (SH&E, 2005)

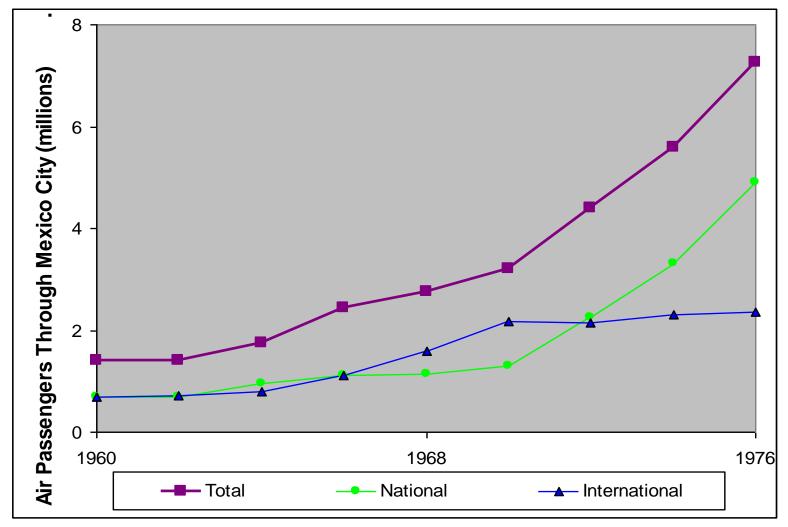
 "The long-term forecast growth... was inconsistent with...expectations...[and] were revised to... more reasonable levels"

Domestic Pax for Miami update for 2010, 2012

Forecast Method and Variant		Forecast	Actual		
Method	Data Used (form)	2020	1990	2000	
	Dade Country	13.96			
Population	Dade and Broward	15.35			
	Dade and Broward (non-linear)	17.74			
Yield and Per	Dade County	19.87			
Capita Personal	Dade and Broward	19.69		г	
Income	Dade and Broward (non-linear)	19.13			Actual
Time Series	Dade County	17.41			2010
	Dade and Broward	18.67	9.92	17.4	=18.8
	Dade and Broward (non-linear)	40.05			
Per Capita	Dade County	26.58			Actual
Personal Income	Dade and Broward	24.34			2015
	Dade and Broward (non-linear)	42.40			
Share of US		23.48			=20.8
	Maximum	42.40		L	
	Average	22.97			
	Medium	19.69			
	Minimum	13.96			
	Preferred		15.35		

Miami press release, Jan 2011

- "Miami set a new all-time record for annual passenger traffic in 2011 with 35.7 million passengers"
- BUT:
- "The previous record was set in 1997 when the airport welcomed 34.5 million passengers."
- Source: http://blogs.sun-sentinel.com/south-florida-travel/2011

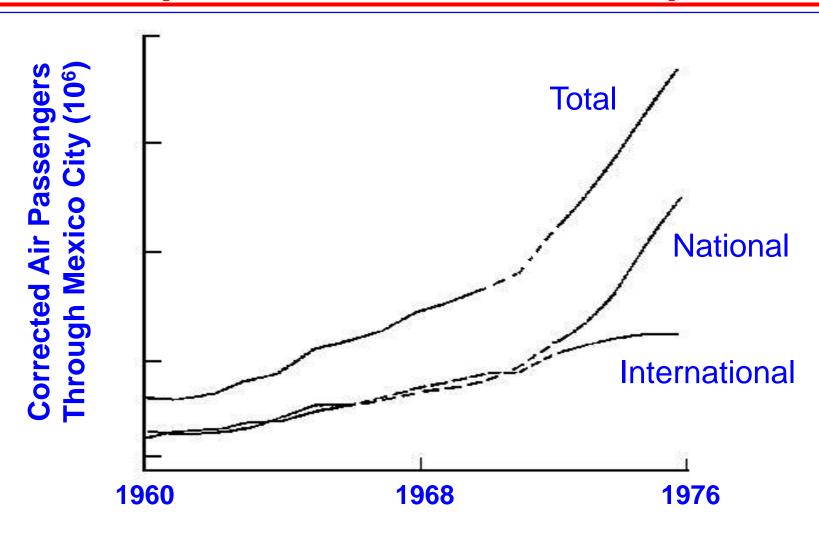

Principles for forecasting in practice

- Detailed Examination of Data
 Statistics are often inconsistent, wrong, or otherwise inappropriate for extrapolation
- Extrapolation for Short Term, About five years
- Scenarios for Long Term,
 Allowing for basic changes
- Ranges on Forecasts,
 As wide as experience demonstrates

Recommended Procedure

- 1. Examine Data compare sources, check consistency
- 2. Identify Possible Causal Factors relevant to site, period, activity
- 3. Do regression, extrapolate for short term, apply historical ranges on forecasts
- 4. Identify future scenarios
- 5. Project ranges of possible consequences
- 6. Validate Plausibility compare with elsewhere

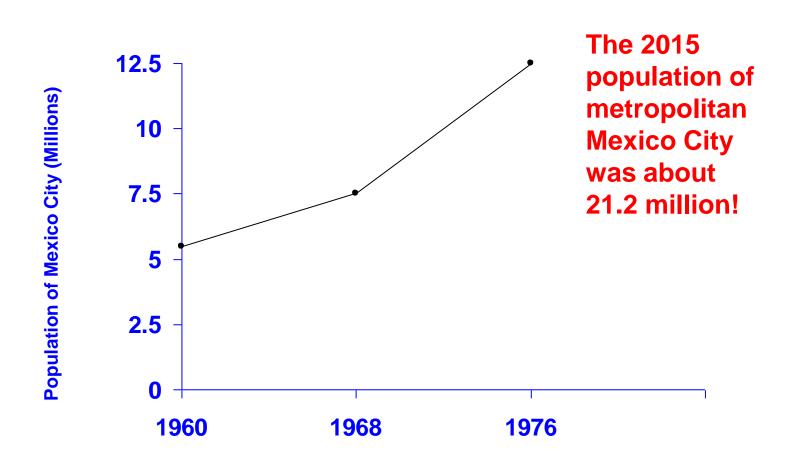
Passengers, Mexico City **International Airport (AICM)**

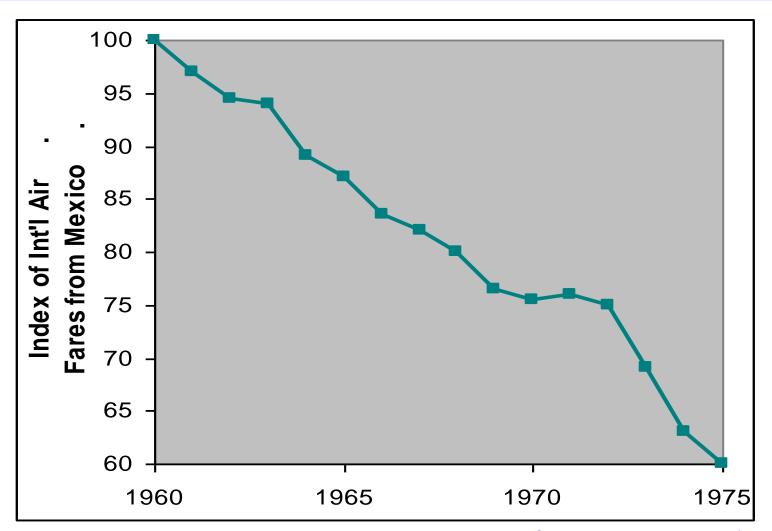


Mexico City -- Data Problems

- Typographical Error
 Seen by examination of primary data
- Double Counting Introduced by a new category of data
- New Definitions of Categories
 Detected by anomalies in airline performance (pax per aircraft) for national, internat'l traffic

These problems occur anywhere

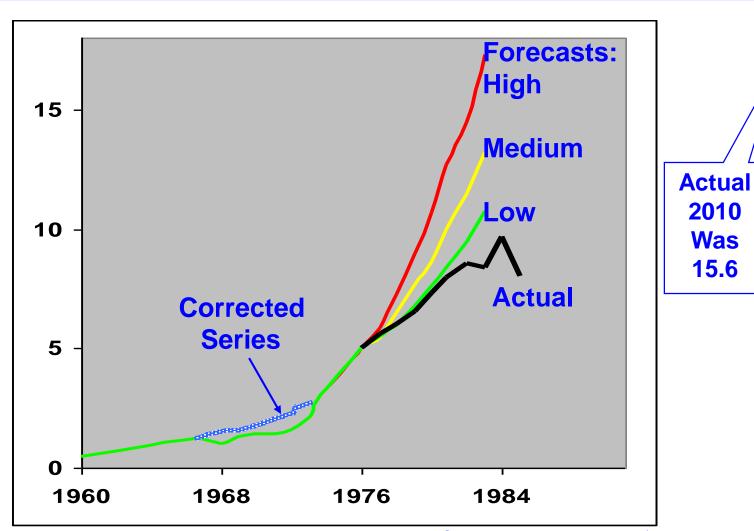

Passengers Through AICM (Corrected Version)


Mexico City Causes of Trends

- Economic Boom
 Post 1973 oil prosperity
- Recessions Elsewhere
 Affecting international traffic
- Population Growth
- Fare Cuts
 Relative to other commodities

Population Increase of Mexico City's Metro Area

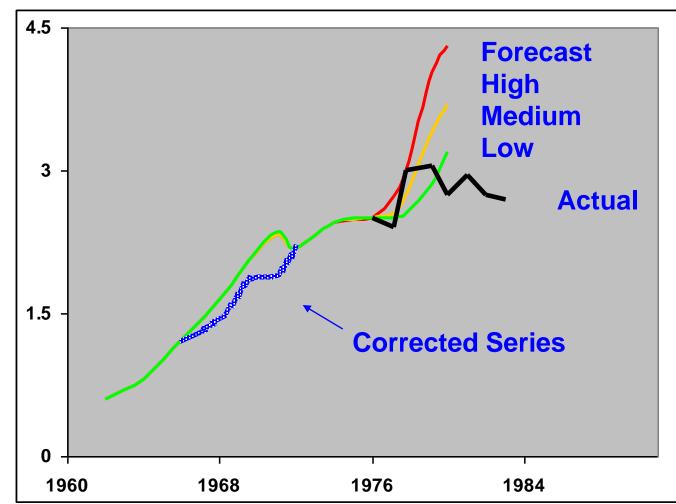
Trend of International Air Fares (at Constant Prices)



Mexico City -- Note

- Traffic formula based on these variables (or others) does not solve forecasting problem.
- Why?
- Formula displaces problem, from traffic to other variables.
- How do we forecast values of other variables (population, etc)?

Short-Range Forecasts, National Passengers, AICM


Forecast National Passengers for **Mexico City** (millions)

2010 Was **15.6**

Short-Range Forecasts, International Pax. AICM

Forecast
International
Passengers
for
Mexico City
(millions)

Actual 2010 was 8.5

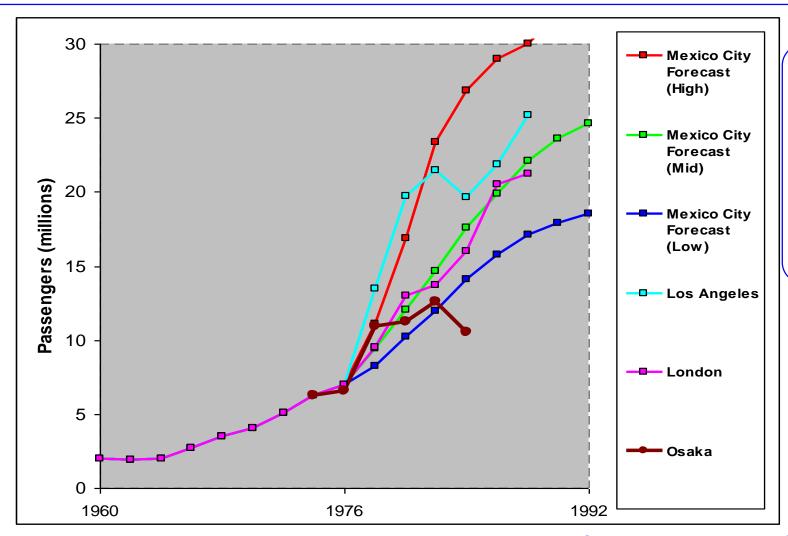
Mexico City -- Elements of Long-range Scenarios

- Demographics
 - Rate of Population Increase
 - Relative Size of Metropolis
- Economic Future
- Fuel Prices and General Costs
- Technological, Operational Changes
- Timing of Saturation

Long-range Scenarios

New Markets

→ Japan, Pacific Rim, United Europe


More Competition

- Deregulation, Privatization
- Transnational Airlines

New Traffic Patterns

- → Direct flights bypassing Mexico City
- More Hubs (Bangkok, Seoul?)
- New Routes, such as over Russia

Long Term AICM Forecasts, validated by data elsewhere

Actual 2010 24.1 M

and 38.4 M in 2015

Summary

- Forecasting is not a Science
 - + too many assumptions
 - + too much ambiguity
- Regression analysis for short term
 - Apply historical ranges on projections
- Scenarios for Long range
 - → compare with experience elsewhere
- STRESS UNCERTAINTY